

Cognitive Architecture and Combinatorial Logic: A Developmental Analysis of Table Structuring at Week 255

The capacity for a human being to organize reality into structured frameworks represents one of the most significant cognitive leaps in the lifespan curriculum. At exactly week 255—the fourth year of life—the child stands at the threshold of transition from intuitive, associative thinking to the early foundations of formal analytical processing.¹ Within the specific domain of Propositional Logic, the node of Table Structuring (Node ID: 1.1.1.1.1.1.1) serves as the critical architectural precursor to Truth Table Construction. This is not merely an exercise in sorting; it is the physical externalization of a logical search space, where the child defines the parameters of a problem before attempting to compute its values.³

Developmental First Principles of the Fourth Year

To understand the 255-week-old child as a knowledge creator, one must look past the "performance" of sorting and identify the underlying cognitive mechanisms. At this specific developmental moment, four primary principles govern the child's interaction with logical structures.

The first principle is the Emergence of Multidimensional Classification. While a younger child might sort by a single salient attribute—such as "all red things here"—the 255-week-old begins to demonstrate the cognitive flexibility required to consider two or more attributes simultaneously.³ This is the biological root of the double-entry table. The child is beginning to grasp that an object can exist as a member of set *A* (Color) and set *B* (Shape) concurrently. This coordination of dimensions is a high-level executive function that requires the child to inhibit the impulse to focus on only one feature, instead holding a complex relational map in working memory.⁴

The second principle is the Somatic Mapping of Abstract Concepts. For the 4-year-old, logic is not a symbolic internal state but a physical arrangement of reality.⁷ Knowledge is "learned" through the hands. By physically placing a wooden tablet at the intersection of a vertical "color axis" and a horizontal "shape axis," the child is building a "neural hook" for future Cartesian coordinates and Boolean logic.⁹ The tactile feedback of the material—the weight of the beech wood, the precision of a grid—provides the "reality feedback" necessary for the child to form and test conjectures.¹⁰

The third principle involves the Positioning and Connecting Play Schemas. Developmental observation reveals that children at this age have an innate drive to align objects, stack them, and create borders.¹² This "Positioning Schema" is the evolutionary precursor to the table. When a child lines up blocks in a grid, they are not just "playing"; they are exercising a fundamental human impulse to impose order on the environment. The "Connecting Schema" follows, as the child looks for relationships between these aligned objects, exploring how they relate and connect in a larger system.¹²

The fourth principle is the Transition from "Whole" to "Parts" (The Dichotomy Principle). At week 255, children are most engaged when they encounter the integrated, lived experience of a system before it is dissected.⁸ In the context of Table Structuring, this means the child should first encounter the grid as a "whole" environment for play. The individual "parts"—the specific logical operators or truth values—will be discovered through the child's own divergent exploration within that whole. This ensures the child experiences the "joint understanding" of how elements work together before they are asked to analyze them in isolation.

Developmental Milestone (Week 255)	Cognitive Impact on Table Structuring
Multidimensional Classification	Ability to cross-reference two attributes (e.g., Red + Triangle) ³
Executive Function (Inhibitory Control)	Ability to ignore distracting features to focus on defined categories ⁶
Fine Motor Precision (Pincer Grip)	Accuracy in placing "Points" or "Lines" on a structured grid ¹²
Spatial Reasoning	Understanding of "above," "below," and "next to" in a 2D plane ²

Critique of Inappropriate Pedagogical Approaches

Despite the clear developmental readiness for structural logic, many traditional educational tools for 4-year-olds are fundamentally misaligned with the Spark Principle. These failures typically manifest in three forms: simulators, closed systems, and compliance-oriented worksheets.

Digital simulators and "logic apps" for preschoolers are frequently recommended but are largely inappropriate for the 255-week-old. These tools fail the Open-Ended Play Test because they lack sensory richness and real-world consequences.¹⁰ In a digital grid, the child cannot feel the edge of the line or the weight of the variable. The "feedback" is often a generic sound or animation rather than the physical reality of a block not fitting into a space.

This reduces the child to a consumer of a simulation rather than a creator of knowledge through interaction with reality.

Closed systems, such as basic shape-sorter buckets or "correct-answer" puzzles, are also inappropriate for this specific node. While useful for younger infants, by week 255, these systems are too narrow.¹⁵ They focus on compliance—finding the one pre-determined outcome—rather than curiosity-driven exploration. A true structuring tool must be open-ended, allowing the child to decide what the categories are and how the table should be structured. If the tool "tells" the child where the pieces go, the person's own problem-solving is never engaged.

Finally, compliance-oriented logic worksheets are a common failure in early childhood settings. These worksheets often require a level of symbolic literacy that the 255-week-old has not yet mastered, creating a "barrier to entry" that foils the knowledge-creation process.⁷ Forcing a child to fill out a paper grid often results in "performance for observers" rather than genuine engagement. The child may learn to "finish the page" to please an adult, but they have not internalized the logical architecture of the table.

Tier 1: Premium Selection – The Spielgaben V4 (with emphasis on Gifts 7-10 and Grid Playboard)

The Spielgaben V4 system represents the absolute highest-leverage tool globally for the Table Structuring node. Rooted in the original Froebelian tradition and refined for modern developmental standards, this tool provides a complete, sequential environment for moving from concrete volumes to abstract logical points.⁸

Technical Specifications and Global Sourcing

Attribute	Specification
Product Name	Spielgaben V4 Complete Set (Legacy Edition)
Manufacturer	Spielgaben (Germany/Global)
Material Composition	Solid European Beech and Birch wood; natural wool; food-grade, non-toxic dyes ¹⁸
Framework Components	14 sequential sets of manipulatives (Volumes, Planes, Lines, Points) ¹⁸

Structuring Base	Dual-sided Grid Playboard (1-inch precision grid) + Solid Wood Playboard ¹⁹
Dimensions	Cabinet: 45 × 45 × cm; Drawers: 8 individual storage units ¹⁸
Weight	25 kg (Total system) ¹⁸
Safety Certifications	EN 71 (European), ASTM F963 (American), AS/NZS ISO 8124 ¹⁸
Price (Estimated)	€450 - €550 (Amortized over 500+ weeks of use) ²⁰
Sourcing Viability	Global Retail (Direct from manufacturer; shipping from USA, UK, Australia hubs) ¹⁸

Tier Justification

The Spielgaben V4 is the Tier 1 recommendation because it passes all four selection tests with a significantly higher ceiling than any other tool.

1. **Open-Ended Play Test:** The system is entirely "loose parts." The Grid Playboard acts as a neutral framework, while the tablets (Gift 7), sticks (Gift 8), and points (Gift 10) can be configured in infinite logical variations. There is no "correct" way to use the grid; the child determines the logic of the space.¹²
2. **First-Week Engagement Test:** On Day 1, the child is captivated by the sheer variety and beauty of the materials. By Day 7, the child's exploration has shifted from sensory handling to structured arrangement as they discover how the small pieces (Points) relate to the grid lines.¹⁰
3. **Divergent Exploration Test:** In the hands of one child, the grid becomes a city map; in the hands of another, it becomes a color-gradient matrix; in a third, it becomes a systematic categorization of geometric triangles (equilateral, isosceles, scalene).²³ Each exploration reveals a unique facet of that child's curiosity.
4. **Knowledge Leverage Test:** This is the highest-leverage tool because it embodies the fundamental history of geometry and logic. The transition from Gift 7 (Planes) to Gift 10 (Points) perfectly mirrors the historical development of logical representation. It moves the child from the concrete "Whole" to the most fundamental "Part"—the logical point.⁸

7-Day Play Guide: Constructing the Framework

Introduction Protocol: Present the closed cabinet to the child. Let them open the drawers themselves. Do not explain what the pieces are for. Place the Grid Playboard on the floor or a

low table and walk away.

- **Day 1: The Sovereignty of the Grid.** The child will likely explore the grid's physical texture. They may begin placing "Points" (Gift 10) into the center of the squares.
 - *Facilitator Guidance:* Do not correct their placement. Observe if they are "Positioning" (lining things up) or "Transporting" (moving pieces in and out of the drawers).¹²
- **Day 2: Plane and Boundary.** Introduce Set 7 (Parquetry Tablets). The child may begin to see how the colored triangles and squares can fill the grid areas.
 - *Facilitator Guidance:* Notice if the child begins to group colors. This is the first sign of "Attribute Logic" emerging.³
- **Day 3: The Emergence of the Axis.** Select two different pieces (e.g., a Red Square and a Blue Triangle) and place them at the top of two separate columns.
 - *Facilitator Guidance:* This is a "Spark" setup. You are creating a problem: "What belongs under these?" Do not speak; wait for the child to engage with the pattern.⁷
- **Day 4: Combinatorial Conflict.** The child may attempt to place a piece that fits both categories or neither. This is where "Table Structuring" becomes active problem-solving.
 - *Facilitator Guidance:* If the child looks for help, ask: "I wonder where this one would like to live?".⁷ Let them struggle with the "intersection."
- **Day 5: Expanding the Variables.** The child may decide to add a third attribute (e.g., size) by incorporating different lengths of sticks (Gift 8).
 - *Facilitator Guidance:* Observe if the child is creating "rows" to cross-reference the "columns." This is the construction of a double-entry table.²⁶
- **Day 6: Divergent Narrative.** The child might abandon the "sorting" to build a complex, structured design or a symmetrical "snowflake".¹³ This is not a failure; it is the child exploring the "Joint Understanding" of the parts working together.
- **Day 7: The Ritual of Order.** In the Froebelian tradition, the "Gift" must be returned to its whole form in the box.
 - *Facilitator Guidance:* Help the child see the beauty in the organized drawer. This reinforces the concept that structure is not just for the play board, but for the system itself.²⁸

Engagement Observation Guide

Signs of a Spark:

- The child returns to the grid unprompted after a meal or nap.
- They begin to "mutter" their logic: "Blue goes here... red square is hiding here."
- They create their own "headers" using unusual objects (e.g., a small toy car at the top of a column to mean "things that roll").⁵
- They show "Persistence in the Face of Error"—if a structure collapses or a piece doesn't fit the logic, they don't give up; they re-examine the grid.¹

The Spark Threshold:

This is reached when the child's engagement becomes "self-correcting." They no longer look to the adult for validation of their placement. The "Truth" of the table is provided by the structure itself.

Signs It Is Not Calling to Them (Right Now):

- The child uses the grid board as a "bridge" for cars or a "shield," ignoring the grid lines entirely.
- They become frustrated by the small size of the "Points" and prefer to throw them.
- **Action:** This is valuable data. It suggests the child may be more aligned with the Somatic Sphere (Gross Motor) or the Somatic Internal World right now. Put the tool away and try again in 50 weeks.

"What's Next" if the Spark Is There

- **Immediate Deepening:** Provide the Spielgaben "Inspiration Cards." These offer more complex "matrix challenges" that the child can choose to replicate or modify.²²
- **Domain Connection:** This fascination connects to Mathematics (Set Theory), Computer Science (Database Structuring), and Linguistics (Sentence Structure).
- **Long-Term Path:** If the child loves Table Structuring, they are likely to enjoy future nodes like "Truth Value Computation" (Week 280) and "Predicate Logic Exploration" (Week 350). Keep the doors open to coding tools (like Botley or Cubetto) that utilize grid-based navigation.²

Tier 2: Independent Purchase – Nathan Matrix Series / Learning Resources Attribute Blocks

For families and smaller clubs, the Nathan "Ateliers Matrix" series or the Learning Resources "Attribute Blocks" provide a focused, high-quality experience in table structuring at a more accessible price point.²⁵

Technical Specifications

Attribute	Specification
Product Name	Ateliers Matrix: Formes et Couleurs (Matrix: Shapes and Colors)
Brand	Nathan (France/Global)

Price	€85.00 - €110.00
Materials	Laminated cardstock (Challenge cards); High-density, non-toxic plastic beads/shapes ²⁵
Components	1 grid stand (abacus style or flat grid); 60-100 attribute pieces; progressive difficulty cards ²⁵
Lifespan	150 - 200 weeks
Sourcing	Global Retail (Educational suppliers like Nathan, Amazon, or specialized toy stores) ³²

Tier Justification

This tool is categorized as Tier 2 because it is a "Prepared Environment" that is more specialized than the Spielgaben. While excellent for the "Table Structuring" node, it has a lower "Transformative Repertoire." It is designed specifically to teach the double-entry table, which makes it easier for some children to start but limits the "infiniteness" of the play.²⁵ It remains a "Real Tool" because it uses physical pieces and provides direct reality feedback through the grid structure.

7-Day Play Guide: The Matrix Challenge

- **Day 1: The Bead Bowl.** Present just the bowl of shapes. Let the child explore the different textures (circles, squares, triangles, hexagons) and colors.²⁵
- **Day 2: The Mystery Bag.** Put the shapes in an opaque bag. Have the child feel a shape and guess what it is before pulling it out. This builds "Attribute Awareness".²⁵
- **Day 3: The Stand.** Introduce the abacus or grid stand. Show how the pieces can be "filed" into the structure.
- **Day 4: Color Columns.** Ask the child: "Can we put all the same colors in the same street?" This introduces the vertical axis of the table.²⁵
- **Day 5: Shape Rows.** Now, ask: "Can the triangles all live on the same floor?" This introduces the horizontal axis.
- **Day 6: The Intersection Riddle.** Use the challenge cards. These cards use symbols to tell the child which piece goes in which "cell" of the matrix. The child must "decode" the column symbol and the row symbol.²⁵
- **Day 7: Role Reversal.** Have the child create a "mistake" in the matrix and see if the adult can find it. This demonstrates a deep understanding of the table's logical rules.¹¹

Engagement Observation Guide

- **Signs of a Spark:** The child begins to ignore the cards and creates their own "Mega-Matrix" using every piece in the set. They might start categorizing by "Thickness" (if using Attribute Blocks) or "Number of Holes".⁵
- **Signs of Non-Resonance:** The child treats the pieces as "coins" for a store and shows no interest in the grid.
 - *Facilitator Insight:* The child might be more interested in the "Human World" domain (Social Exchange) right now. This is valuable data for the next week's tool selection.

Sanitization Protocol

- **Giver Step:** Plastic pieces can be washed in warm, soapy water or a top-rack dishwasher cycle (in a mesh bag). Wipe cards with a damp cloth.
- **Receiver Step:** Ensure all pieces (60-piece sets are common) are present. Check for any cracked plastic.³⁵

Tier 0: DIY Alternative – The "Washi Tape Logic Grid"

For families without a physical kit, the "Table Structuring" experience can be authentically recreated using common household items. This DIY version often provides *higher* divergent exploration potential because the categories are not limited by the manufacturer.

Materials List

1. **A Grid Maker:** Washi tape, painter's tape, or even long pieces of string.
2. **A "Logic Space":** A cleared section of floor or a large kitchen table.
3. **The "Attribute Bowl":** 30-40 objects from around the house that vary in 2-3 clear ways (e.g., Lego bricks of different colors and sizes, different types of pasta, various socks, or a collection of leaves and stones from the park).²⁹
4. **Header Markers:** Small scraps of paper and a thick marker.

Implementation Activities

1. **Build the Framework:** Tape a 3×3 grid onto the table. This is the "Whole."
2. **The "Header" Game:** Pick two attributes from your bowl. Let's say "Color" (Red, Blue, Yellow) and "Texture" (Bumpy, Smooth).
3. **Axis Definition:** On the paper scraps, draw a red circle, a blue circle, and a yellow circle. Place these at the top of the three columns. Then, draw a "zigzag" for bumpy and a "straight line" for smooth. Place these at the start of the two rows.
4. **Populate the World:** Invite the child to take objects from the bowl and find their "home" in the grid.
 - *Critical Logic Moment:* When the child finds a "Red Bumpy Lego," they must navigate

to the intersection of the "Red Column" and the "Bumpy Row."

5. **Expand and Evolve:** Once the child is comfortable, change the headers. Use "Things that belong in the kitchen" vs. "Things that belong in the bedroom." This moves the logic from physical attributes to abstract functional categories.¹

Observation Guide (Same as Tier 1/2)

Watch for the child's reaction when they find an object that *doesn't* fit the grid. Do they try to create a new row/column for it? This is the ultimate signal of Table Structuring agency. They are not just filling a table; they are *defining* it.

The Path Forward: Trajectory Optimization

The selection of a Table Structuring tool at week 255 is a strategic investment in the child's future engagement with reality. By choosing a tool with high Knowledge Leverage—one that emphasizes the grid as a universal organizational framework—we are preparing the child for a series of compounding successes.

Life Week	Potential Future Node	Compounding Knowledge from Week 255
Week 280	Truth Value Computation	Uses the grid to determine "True/False" outcomes
Week 350	Grid-Based Programming	Transfers 2D navigation to screen-free coding (Botley/Cubetto) ²
Week 520	Cartesian Geometry	Translates "Rows/Columns" into <i>x</i> and <i>y</i> coordinates
Week 780	Scientific Classification	Applies table logic to the Periodic Table or Biological Taxonomy ¹⁰
Week 1500+	Professional Data Modeling	Uses the fundamental logic of the double-entry table to structure digital systems

Synthesis: Agency as the Ultimate Data Point

In the 5,200-week frame, the tool is a catalyst, but the person is the creator. The data we collect this week—whether the child spends 20 minutes unprompted with the Spielgaben grid or puts the Nathan Matrix beads in their pocket and walks away—is the most valuable information the family will receive. It tells us not what the child "should" be doing, but what they are *actually* fascinated by.¹

If the Spark occurs, we have found a domain worth solving for this person. We do not need to "teach" them logic; they will learn it by pursuing their own questions within the structured reality we have provided. If the Spark does not occur, we have not failed. We have successfully narrowed the search. We move to the next node in the tree, perhaps exploring the Somatic Sphere or the Human World, always feeding the curiosity that is already there.¹

The Table Structuring node is a gateway. It is the moment where the child realizes they can build a framework to hold the world. Whether that framework is made of beech wood, plastic beads, or washi tape, the cognitive achievement is the same: the person has become an architect of logic.

"Start now and iterate 10,000 times." By providing a high-leverage tool at week 255, we are giving the child their first 100 iterations in the domain of structural reasoning. The engagement itself is the signal. The exploration is the success. The person, at every age, is the knowledge creator. We are merely the facilitators of their genuine play.

Works cited

1. 4–5 years old: Cognitive and linguistic development, accessed February 4, 2026, <https://naitreetgrandir.com/en/step/3-5-years/development/4-5-years/child-cognitive-and-linguistic-development-4-5-years/>
2. Adventure with mathematics, accessed February 4, 2026, https://przedszkole206lodz.pl/wp-content/uploads/2025/04/Mathematics_publication_2022.pdf
3. All-in-One Guide to Sorting Skills in Early Math Learning - Think Academy, accessed February 4, 2026, <https://www.thethinkacademy.com/blog/all-in-one-guide-to-sorting-skills-in-early-math-learning/>
4. A Microgenetic/Cross-Sectional Study of Matrix Completion: Comparing Short-Term and Long-Term Change - ResearchGate, accessed February 4, 2026, https://www.researchgate.net/publication/11333643_A_MicrogeneticCross-Sectional_Study_of_Matrix_Completion_Comparing_Short-Term_and_Long-Term_Change
5. Math in the Preschool Classroom Classification, Matching, Seriation and Patterning | Extension | University of Nevada, Reno, accessed February 4, 2026, <https://extension.unr.edu/publication.aspx?PubID=2680>
6. Assessment of children as confident and involved learners in Early Childhood Education and Care: Literature review - ACER Research Repository, accessed February 4, 2026,

https://research.acer.edu.au/cgi/viewcontent.cgi?article=1017&context=early_chil_dhood_misc

7. Math Manipulatives for Little Hands: Why Blocks Make Better Foundations - Demme Learning, accessed February 4, 2026, <https://demmelearning.com/blog/math-manipulatives-little-hands/>
8. Froebel Gifts, accessed February 4, 2026, <https://www.froebelweb.org/gifts/>
9. Best Preschool Manipulatives - Encouraging Moms at Home, accessed February 4, 2026, <https://encouragingmomsathome.com/best-preschool-manipulatives/>
10. Froebel's gifts and block play today, accessed February 4, 2026, <https://files.froebel.org.uk/production/documents/Froebels-gifts-and-block-play-today.pdf>
11. Montessori Toy Guide: Choosing the Best Educational Toys for Toddlers & Preschoolers, accessed February 4, 2026, <https://blog.fms.org/montessori-toy-guide-choosing-the-best-educational-toys-for-toddlers-preschoolers>
12. What are play schemas and why do they matter? - Famly, accessed February 4, 2026, <https://www.famly.co/blog/play-schemas-and-why-they-matter>
13. Montessori-Inspired Winter Activities with Spielgaben {Free Printables}, accessed February 4, 2026, <https://livingmontessorinow.com/montessori-inspired-winter-activities-with-spielgaben-free-printables/>
14. Which is better: Montessori or Play-based learning?, accessed February 4, 2026, <https://blog.acceleratelearning.com/play-based-vs-montessori-learning>
15. Attribute Shapes - Walmart, accessed February 4, 2026, <https://www.walmart.com/c/kp/attribute-shapes>
16. Montessori Sorting Toys for Kids: Sort and Match Games - Alphabet Trains, accessed February 4, 2026, <https://alphabet-trains.com/sorting-toys.html>
17. Froebel's Gifts, accessed February 4, 2026, <https://www.froebel.org.uk/training-and-resources/froebels-gifts>
18. Spielgaben Complete Package Deal, accessed February 4, 2026, <https://spielgaben.com/shop/spielgaben-complete-package-deal-2/>
19. Hands-On Learning and Play for All Ages with Spielgaben - Raising Lifelong Learners, accessed February 4, 2026, <https://raisinglifelonglearners.com/spielgaben-review/>
20. Spielgaben Ultimate Package Deal, accessed February 4, 2026, <https://spielgaben.com/shop/spielgaben-ultimate-package-deal/>
21. Spielgaben Package Archives, accessed February 4, 2026, <https://spielgaben.com/product-category/spielgaben-package/>
22. Spielgaben set, accessed February 4, 2026, <https://spielgaben.com/>
23. learning shapes for preschool - Wildflower Ramblings, accessed February 4, 2026, <https://wildflowerramblings.com/homeschooling/learn-shapes-for-preschool/>
24. Montessori-Inspired Geometry Activities Using Wooden Shapes and Free Printables, accessed February 4, 2026, <https://livingmontessorinow.com/montessori-inspired-geometry-activities-using->

[wooden-shapes-and-free-printables/](https://www.wooden-shapes-and-free-printables/)

25. LEARNING, accessed February 4, 2026,
https://www.tonino.it/wp-content/cataloghi/pdf_6_1.pdf

26. An effective educational tool: construction kits for fun and meaningful learning | Request PDF - ResearchGate, accessed February 4, 2026,
https://www.researchgate.net/publication/272036696_An_effective_educational_tool_construction_kits_for_fun_and_meaningful_learning

27. Logic Games for Children - Etsy, accessed February 4, 2026,
https://www.etsy.com/market/logic_games_for_children

28. Froebel Gifts Kindergarten Preschool Curriculum Educational Toys, accessed February 4, 2026, <https://froebelgifts.com/intro-to-the-gifts>

29. Logic for Preschoolers: What They Can Learn and What Instruments to Use, accessed February 4, 2026,
<https://funexpectedapps.com/blog-posts/logic-for-preschoolers-what-they-can-learn-and-what-instruments-to-use>

30. Montessori Learning and the Spielgaben, accessed February 4, 2026,
<https://spielgaben.com/montessori-learning-and-the-spielgaben/>

31. attribute blocks - jumbo | proportional shapes | satoytrade youth toy, accessed February 4, 2026,
<https://satoytrade.co.za/01-shapes-colours/4914-attribute-blocks-large-60pc-in-shape-fit-container-30x22cm.html>

32. accessed January 1, 1970,
<https://materiel-educatif.nathan.fr/dme/jeux-educatifs/logique-tri-algorithmes/ateliers-matrix-formes-et-couleurs.html>

33. Montessori vs. Play-Based Preschool: Which Is Right for Your Program? - Brightwheel, accessed February 4, 2026,
<https://mybrightwheel.com/blog/montessori-vs-play-based-preschool>

34. Top 5 Shape Sorters That Spark Cognitive Skills in Toddlers - MGT Toys, accessed February 4, 2026,
<https://mgttoys.com/blogs/news/top-5-shape-sorters-that-spark-cognitive-skills-in-toddlers>

35. Food and Nutrition - Utah Core Standards, accessed February 4, 2026,
<https://www.uen.org/core/core.do?courseNum=200108>

36. Companion Guide to Minnesota's Knowledge and Competency Framework for Early Childhood Professionals: Working with Preschool-Aged Children, accessed February 4, 2026,
<https://dcyf.mn.gov/sites/default/files/2024-06/Companion%20Guide%20to%20Minnesota%27s%20Knowledge%20and%20Competency%20Framework%20for%20Early%20Childhood%20Professionals%20Working%20with%20Preschool-Aged%20Children%20in%20Center%20and%20School%20Programs.pdf>

37. The Development of Logico-Mathematical Knowledge in a Block-Building Activity at Ages 1–4 - ResearchGate, accessed February 4, 2026,
https://www.researchgate.net/publication/248909134_The_Development_of_Logico-Mathematical_Knowledge_in_a_Block-Building_Activity_at_Ages_1-4